Угорь вырабатывает электроэнергию

masterok

Мастерок.жж.рф

Хочу все знать

В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество. Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.

Кто вырабатывает электричество?

Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество. Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.

Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Как рыбы бьют током?

Удар током осуществляется с помощью импульсов. Рыба целенаправленно бьет ими жертву. Некоторые виды намеренно испускают в жертву примерно 500 импульсов, чтобы окончательно поразить противника. Соответственно, удары являются осознанными и направленными, нельзя получить заряд, просто дотронувшись до рыбы.

В большинстве случаев используют свое “оружие” рыбы только при прямом контакте с жертвой. В определенных ситуациях могут пустить ток на небольших расстояниях, чтобы отогнать более крупного хищника. У вышеперечисленных рыб разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе от 1 до 6 киловатт (электрический скат Torpedo nobiliana).

Электрический скат Torpedo nobiliana

Опасны ли электрические рыбы человеку?

Даже слабый заряд при подобных параметрах может серьезно повредить здоровью человека, особенно на глубине. Бывали случаи, когда выброшенные на берег рыбы буквально сбивали людей на землю при контакте, из-за чего срочно требовалось врачебное вмешательство.

Электрический угорь

Электрические угри обитают в Южной Америке, в реках, и охотятся на мелкую рыбу. Взрослые особи вырастают в длину от 1 до 3 метров, но даже они нередко становятся жертвами местных хищников. Из-за этого угри вынуждены использовать электричество не только для охоты, но и для обороны.

Мышцы для накопления энергии, которые также часто называются “электрические органы”, располагаются вдоль позвоночника и составляют примерно 80% от общей массы угря. Заряд постепенно накапливается в специальных пузырчатых складках, после чего в нужный момент распространяется в пространстве, поражая все живое в радиусе. Данным способом рыба парализует жертву, после чего может приниматься за поедание. Чтобы ток ударил существо, оно должно находиться как можно ближе. Но бывали ситуации, когда рыбаки ловили угря на крючок и получали разряд без контакта с ним: ток проходил по леске вверх и бил сразу, как только человек до нее дотрагивался.

Электрический скат

Данный вид существ знаменит не только способностью вырабатывать электричество, но и своей приплюснутой формой, напоминающей небольшое полотенце. Они обитают преимущественно на дне океанов и достигают 180см в длину.

Электрическую энергию скаты накапливают по всему телу за счет сокращения мышц. Даже юные особи способны бить током с напряжением от 8В. Это помогает охотиться и обездвиживать маленькую рыбу.

О свойствах скатов знали еще в Древнем Египте. Местные врачи использовали легкие удары током юных особей в медицинских целях. Считалось, что небольшие разряды помогают человеку избавиться от болезней.

Великолепный и таинственный электрический угорь

Электрический угорь (Electrophorus electricus) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. 1 Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными, а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными.

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. 2 (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A). 3

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. 4 Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями 5 . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз. 6 Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. 7 Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. 8, 9 Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia) и африканской рыбы аба-аба (Gymnarchus). 10 Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, – указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, 11 используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Читайте также:  Могучая Ахтуба. Рыбалка на большой реке

Анатомия электрического угря Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K + ) поступают в клетку, а три иона натрия (Na + ) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Ион

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K + ) и натрия (Na + ) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. 12 Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Как угорь и скат вырабатывают электричество?

В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество. Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.

Кто вырабатывает электричество?

Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество.

Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.

Нильский гимнарх

Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Как рыбы бьют током?

Удар током осуществляется с помощью импульсов. Рыба целенаправленно бьет ими жертву. Некоторые виды намеренно испускают в жертву примерно 500 импульсов, чтобы окончательно поразить противника. Соответственно, удары являются осознанными и направленными, нельзя получить заряд, просто дотронувшись до рыбы.

В большинстве случаев используют свое “оружие” рыбы только при прямом контакте с жертвой. В определенных ситуациях могут пустить ток на небольших расстояниях, чтобы отогнать более крупного хищника.

У вышеперечисленных рыб разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе от 1 до 6 киловатт (электрический скат Torpedo nobiliana).

Электрический скат Torpedo nobiliana

Опасны ли электрические рыбы человеку?

Даже слабый заряд при подобных параметрах может серьезно повредить здоровью человека, особенно на глубине. Бывали случаи, когда выброшенные на берег рыбы буквально сбивали людей на землю при контакте, из-за чего срочно требовалось врачебное вмешательство.

Электрический угорь

Электрические угри обитают в Южной Америке, в реках, и охотятся на мелкую рыбу. Взрослые особи вырастают в длину от 1 до 3 метров, но даже они нередко становятся жертвами местных хищников. Из-за этого угри вынуждены использовать электричество не только для охоты, но и для обороны.

Электрический угорь

Мышцы для накопления энергии, которые также часто называются “электрические органы”, располагаются вдоль позвоночника и составляют примерно 80% от общей массы угря. Заряд постепенно накапливается в специальных пузырчатых складках, после чего в нужный момент распространяется в пространстве, поражая все живое в радиусе. Данным способом рыба парализует жертву, после чего может приниматься за поедание.

Электрический угорь вдохновил учёных на создание нового элемента питания

Электрический угорь – поистине удивительное существо. Когда натуралисты впервые столкнулись с ним в XVIII веке, то даже не сразу поверили, что эта рыба наносит своим жертвам удар электрическим током. Однако против фактов не попрёшь. И вот спустя два с половиной столетия учёные вдохновились электрическим угрём для того, чтобы создать принципиально новый элемент питания, который в будущем можно будет использовать в носимой электронике, а также при изготовлении «умной одежды».

Электрические органы занимают около 4/5 всей длины тела угря. Эта рыба способна генерировать разряд напряжением до 1300 вольт и силой тока до 1 ампера. Положительный заряд находится в передней части тела, а отрицательный – в задней. Электрические органы используются угрями для защиты от врагов, а также для обездвиживания жертв, которых угри употребляют в пищу. В основном это некрупные рыбы, хотя такой удар током вполне способен оглушить даже лошадь. Среди всех представителей фауны заряд такой силы способны произвести только электрические угри и скаты. Человека подобный заряд может парализовать и даже убить.

Электрические органы угрей состоят из многочисленных собранных в столбики электрических пластинок, которые представляют собой видоизменённые и уплощенные мышечные, нервные и железистые клетки. Между мембранами этих клеток и генерируется разность потенциалов. У угря в организме 70 горизонтально размещённых столбиков по 6000 пластинок в каждом. Пластинки в каждом столбике соединены последовательно, а электрические столбики между собой – параллельно.

По подобию электрических угрей учёные из шанхайского Университета Фудань создали эластичные волокна, которые вполне можно вплетать в одежду или использовать в качестве источника питания носимой электроники. Волокна эти производят достаточно энергии, чтобы питать источники света или электронные гаджеты. Это не первый случай, когда исследователи находят своё вдохновение в живой природе, но от этого результаты их экспериментов не выглядят менее впечатляющими.

Полученные волокна представляют собой некое подобие конденсаторов, которые способны высвобождать энергию гораздо быстрее, нежели традиционные батареи, однако их ёмкость при этом крайне невелика. Первые образцы волокон были получены путём оборачивания листа из углеродных нанотрубок вокруг резинового стержня толщиной в 500 микрон. Нанотрубки не полностью покрывают резиновый сердечник, оголяя его поверхность с определённым шагом. Благодаря этому волокно состоит из проводящих электричество и изолирующих сегментов. Получившиеся в итоге волокна исследователи покрыли проводящим электролитным гелем.

Чем большее число последовательных проводящих и изоляционных сегментов насчитывает волокно, тем большее напряжение оно способно сгенерировать. К примеру, волокно длиной 12 метров способно создать напряжение около 1000 вольт, о чём исследователи сообщили в своей публикации в журнале Advanced Materials ещё 14 января. Предыдущие попытки воспроизвести ткани электрических угрей предполагали использование металлических проводов в качестве сердечников, поэтому получавшиеся волокна не были достаточно гибки для их широкого использования в промышленности.

Волокна на основе резиновых сердечников вполне годятся для создания принципиально новых материалов, таких как эластичная ткань с вплетёнными в неё элементами питания. Во время исследований учёным уже удалось создать браслет, который самостоятельно питал электронные часы, а также футболку, которая обеспечивала энергией встроенные в неё 57 светодиодов. В будущем подобная технология вполне может стать неотъемлемой частью нашего быта. А пока остаётся лишь ждать и надеяться, что у учёных получится найти инвесторов для скорейшего вывода своего изобретения на рынок.

Физика в мире животных: электрический угорь и его «энергостанция»

Экология жизни: Рыба вида электрический угорь (Electrophorus electricus) — единственный представитель рода электрических угрей (Electrophorus). Встречается он в ряде приток среднего и нижнего течения Амазонки. Размер тела рыбы достигает 2,5 метра в длину, а вес — 20 кг. Питается электрический угорь рыбой, земноводными, если повезет — птицами или мелкими млекопитающими.

Читайте также:  6 самых выдающихся уловов рыбаков, вошедших в историю

Рыба вида электрический угорь (Electrophorus electricus) — единственный представитель рода электрических угрей (Electrophorus). Встречается он в ряде приток среднего и нижнего течения Амазонки. Размер тела рыбы достигает 2,5 метра в длину, а вес — 20 кг. Питается электрический угорь рыбой, земноводными, если повезет — птицами или мелкими млекопитающими. Ученые изучают электрического угря десятки (если не сотни) лет, но только сейчас начали проясняться некоторые особенности строения его тела и ряда органов.

Причем способность вырабатывать электричество — не единственная необычная черта электрического угря. К примеру, дышит он атмосферным воздухом. Это возможно благодаря большому количеству особого вида ткани ротовой полости, пронизанной кровеносными сосудами. Для дыхания угрю нужно каждые 15 минут всплывать к поверхности. Из воды кислород брать он не может, поскольку обитает он в очень мутных и мелких водоемах, где очень мало кислорода. Но, конечно, главная отличительная черта электрического угря — это его электрические органы.

Электрический угорь (Источник: youtube)

Они играют роль не только оружия для оглушения или убийства его жертв, которыми угорь питается. Разряд, генерируемый электрическими органами рыбы, может быть и слабым, до 10 В. Такие разряды угорь генерирует для электролокации. Дело в том, что у рыбы есть специальные «электрорецепторы», которые позволяют определять искажения электрического поля, вызываемые его собственным телом.

Электролокация помогает угрю находить путь в мутной воде и находить спрятавшихся жертв. Угорь может дать сильный разряд электричества, и в это время затаившаяся рыба или земноводное начинает хаотично дергаться из-за судорог. Эти колебания хищник без труда обнаруживает и съедает жертву. Таким образом, эта рыба является одновременно и электрорецептивной и электрогенной.

Интересно, что разряды различной силы угорь генерирует при помощи электрических органов трех типов. Они занимают примерно 4/5 длины рыбы. Высокое напряжение вырабатывают органы Хантера и Мена, а небольшие токи для навигационных целей и коммуникационных целей генерирует орган Сакса. Главный орган и орган Хантера размещаются в нижней части тела угря, орган Сакса — в хвосте. Угри «общаются» между собой при помощи электрических сигналов на расстоянии до семи метров. Определенной серией электрических разрядов они могут привлекать к себе других особей своего вида.

Как электрический угорь генерирует электрический разряд?

Угри этого вида, как и ряд других «электрифицированных» рыб воспроизводят электричество тем же образом, что и нервы с мышцами в организмах других животных, только для этого используются электроциты — специализированные клетки. Задача выполняется при помощи фермента Na-K-АТФазы (кстати, этот же фермент очень важен и для моллюсков рода наутилус (лат. Nautilus)).

Благодаря ферменту образуется ионный насос, выкачивающий из клетки ионы натрия, и закачивающий ионы калия. Калий выводится из клеток благодаря специальным белкам, входящих в состав мембраны. Они образуют своеобразный «калиевый канал», через который и выводятся ионы калия. Внутри клетки скапливаются положительно заряженные ионы, снаружи — отрицательно заряженные. Возникает электрический градиент.

Разница потенциалов в результате достигает 70 мВ. В мембране той же клетки электрического органа угря есть и натриевые каналы, через которые ионы натрия могут снова попасть в клетку. В обычных условиях за 1 секунду насос выводит из клетки около 200 ионов натрия и одновременно переносит в клетку приблизительно 130 ионов калия. На квадратном микрометре мембраны может разместиться 100- 200 таких насосов. Обычно эти каналы закрыты, но в случае необходимости они открываются.

Если это произошло, градиент химического потенциала приводит к тому, что ионы натрия снова поступают в клетки. Происходит общее изменение напряжения от -70 до +60 мВ, и клетка дает разряд в 130 мВ. Продолжительность процесса — всего 1 мс. Электрические клетки соединяются между собой нервными волокнами, соединение — последовательное. Электроциты составляют своеобразные столбики, которые соединяются уже параллельно. Общее напряжение генерируемого электрического сигнала достигает 650 В, сила тока — 1А. По некоторым данным, напряжение может достигать даже 1000 В, а сила тока — 2А.

Электроциты (электрические клетки) угря под микроскопом

После разряда снова действует ионный насос, и электрические органы угря заряжаются. По мнению некоторых ученых, насчитывается 7 типов ионных каналов мембраны клеток электроцитов. Расположение этих каналов и чередование типов каналов влияет на скорость производства электричества.

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций – важный фактор

Разряд электрической батареи

По результатам исследования Кеннета Катания (Kenneth Catania) из Университета Вандербильта (США), угорь может использовать три типа разряда своего электрического органа. Первый, как и упоминалось выше — это серия низковольтных импульсов, которые служат для коммуникации и навигационных целей.

Второй — последовательность из 2-3 высоковольтных импульсов продолжительностью несколько миллисекунд. Этот способ используется угрем при охоте на спрятавшуюся и затаившуюся жертву. Как только дано 2-3 разряда высокого напряжения, мышцы затаившейся жертвы начинают сокращаться, и угорь может без труда обнаружить потенциальную еду.

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций – важный фактор

Третий способ — ряд высоковольтных высокочастотных разрядов. Третий способ угорь использует при охоте, выдавая за секунду до 400 импульсов. Этот способ парализует практически любое животное небольшого и среднего размера (даже человека) на расстоянии до 3 метров.

Кто еще способен вырабатывать электрический ток?

Из рыб на это способны около 250 видов. У большинства электричество — лишь средство навигации, как, например, в случае слоника нильского (Gnathonemus petersii).

Но электрический разряд чувствительной силы способны генерировать немногие рыбы. Это электрические скаты (ряд видов), электрический сом и некоторые другие.

Электрический сом (Источник: Wikipedia)

Джейсон Гэллент с коллегами провели секвенсирование генома ряда рыб с электрическими органами, и выяснили, что многие из изученных ими видов не являются родственниками. «Изобретение» природой электрических органов у рыб шло параллельно, но строение батарей очень схоже у всех.

Электрический угорь

Электрический угорь – опасное и загадочное создание. Главной его особенностью является способность воспроизводить электрическое поле, которое он использует не только для навигации, но еще и для охоты, и для защиты от внешних врагов. С обыкновенным угрём его роднит лишь наличие удлиненного тела и мощного анального плавника, с помощью которого он управляет своими перемещениями. Согласно международной классификации, электрический угорь относится к особому отряду лучепёрых рыб – гимнотообразным.

Происхождение вида и описание

Фото: Электрический угорь

Поскольку у дальних предков современных рыб не было ни костей, ни других твердых образований, следы их существования с легкостью уничтожались самой природой. Под действием геологических катаклизмов останки истлевали, разрушались и размывались. Поэтому история происхождения любого вида рыб – это лишь гипотезы ученых, основанные на редких геологических находках и общем представлении о происхождении всего живого на Земле.

От древних сельдеобразных рыб в начале мелового периода отделилась группа карпообразных, облюбовавшая для комфортного обитания пресные тропические воды. Затем они распространились по всем континентам и вышли в море. До недавнего времени электрические угри тоже относились к семейству карпообразных, но в современной классификации они выделены в особый отряд лучепёрых рыб, которому ученые присвоили название «гимнотообразные».

Видео: Электрический угорь

Уникальность представителей гимнотообразных заключается в том, что они вырабатывают электрические заряды различной силы и назначения. Электрический угорь – единственный, кто использует эту способность не только для электролокации, но и для нападения и защиты. Как и его ближайшие сородичи, он имеет длинное узкое тело и перемещается в воде при помощи крупного и сильно развитого анального плавника.

Для дыхания электрическому угрю необходим атмосферный воздух, поэтому он периодически всплывает на поверхность, чтобы сделать очередной вдох. Зато с легкостью может находиться некоторое время без воды, если его тело будет достаточно увлажнено.

Электрический угорь – хищник, и в привычной среде обитания ведет себя довольно агрессивно, нападая даже на более крупного соперника. Известно множество случаев поражения человека электрическим зарядом, испускаемым угрем. Если особь мелкая, то такое воздействие не представляет опасности для жизни человека, но вызывает потерю сознания, неприятные и болезненные ощущения. Крупный угорь, вырабатывающий большую силу тока, способен причинить человеку серьезный вред, поэтому встреча с ним крайне опасна.

Внешний вид и особенности

Фото: Рыба электрический угорь

Внешний вид электрического угря часто сравнивают с внешним видом змеи. Сходство заключается в удлиненной форме тела и волнообразном способе перемещения. Тело угря полностью лишено чешуи. Оно совершенно гладкое и покрыто слизью. Природа одарила электрического угря естественным камуфляжем в виде коричнево-зеленого окраса, который абсолютно не приметен в мутных водах на фоне илистого дна – в излюбленной среде обитания этих рыб.

За перемещения электрического угря отвечает мощный плавник, расположенный в задней части туловища. Еще два небольших грудных плавничка выполняют роль стабилизаторов движения. Ни брюшного, ни спинного, ни хвостового плавников рыба не имеет. Электрический угорь – крупная рыба. Его тело имеет длину около полутора метров, весит средняя особь около 20 кг. Но встречаются и трехметровые особи весом до 40 кг.

В отличие от своих подводных собратьев, угорь дышит не только растворенным в воде кислородом, но и атмосферным воздухом. Для этой цели он вынужден каждые пятнадцать минут (или чаще) выныривать на поверхность, чтобы сделать очередной вдох. Так как на ротовую полость приходится большая часть поглощения кислорода (примерно 80%), в ходе эволюции в почти беззубой пасти угря образовалась слизистая оболочка с повышенной перфузией. Оставшиеся 20% поглощения кислорода обеспечиваются жабрами. Если угрю перекрыть доступ к атмосферному воздуху, он задыхается.

Но главной особенностью этих рыб является генерирование электрических разрядов разной степени мощности. В теле электрического угря расположены специальные органы, отвечающие за выработку электричества. Для наглядности можно представить себе угря в виде электрической «батареи», положительный полюс которой находится в районе головы, отрицательный – в области хвоста.

Напряжение, частота и амплитуда генерируемых импульсов варьируются в зависимости от их назначения:

Минимальная сила тока – менее 50 В – воспроизводится для поиска и обнаружения добычи, максимальная – около 300-650 В – во время атаки.

Читайте также:  Как пригласить к себе окуня на Новый год – охотимся с мормышкой

Где обитает электрический угорь

Фото: Электрический угорь в воде

Электрические угри широко распространены в северо-восточной части Южной Америки, в бассейне Амазонки. Они населяют саму Амазонку, реку Ориноко, а также их притоки и старицы. Рыбы в основном живут в насыщенной грязью и илом мутной воде с богатой растительностью. Помимо рек и ручьев, они населяют также болотистые водоёмы. Все места их обитания характеризуются низким содержанием кислорода. Поэтому угри и получили в подарок от природы адаптивную способность поглощать кислород через рот на поверхности воды.

В процессе адаптации к грязной и мутной среде обитания электрический угорь развил и другие уникальные способности. Максимально ограниченная видимость, например, преодолевается способностью к активной низко-электрической связи. Для территориального разграничения и поиска партнеров, а также для ориентации животные используют свои электрические органы.

Электрический угорь обитает только в пресных водах, как и большинство его потенциальной добычи. Этот «домосед» редко меняет место своего проживания, если на выбранной территории достаточно пищи. Однако наблюдения за поведением электрического угря в брачный период свидетельствуют о том, что особи могут покидать привычные места, удаляясь на время спаривания в малодоступные районы, и возвращаются обратно с уже подросшим потомством.

Теперь Вы знаете где живет электрический угорь . Давайте же посмотрим, что он употребляет в пищу.

Чем питается электрический угорь

Фото: Электрический угорь

Основной рацион питания электрического угря составляют некрупные морские обитатели:

Нередко к нему на обед попадают мелкие млекопитающие и даже птицы. Молодняк не брезгует и насекомыми, а взрослые особи предпочитают трапезу посолиднее.

Проголодавшись, угорь начинает плавать, испуская слабые электрические импульсы мощностью не более 50 В, пытаясь засечь малейшие волновые колебания, способные выдать присутствие живого существа. Обнаружив потенциальную добычу, он резко увеличивает напряжение до 300-600 В в зависимости от размеров жертвы и атакует ее при помощи нескольких коротких электрических разрядов. В результате жертва парализована, и угрю остается только спокойно расправиться с ней. Добычу он заглатывает целиком, после чего проводит некоторое время в неподвижном состоянии, переваривая пищу.

Сила электрических ударов, производимых угрем, регулируется таким образом, чтобы буквально заставить добычу покинуть укрытие. Хитрость заключается в том, что электрический ток активирует двигательные нейроны жертвы и, следовательно, генерирует непроизвольные движения. Электрический угорь обладает целым арсеналом различных ударов током, поэтому успешно справляется с этой задачей.

С целью исследования поведенческих особенностей электрического угря ученые препарировали мертвую рыбу электрическими проводниками, чтобы заставить её, как настоящую добычу, вздрагивать во время разряда, создавая движение в воде. В различных экспериментах с такими моделями добычи они обнаружили, что вздрагивание определяло целенаправленность нападения на обездвиженную жертву. Угри нападали на рыбу, только когда она реагировала на удар электрическим током. Напротив, одни только визуальные, химические или сенсорные стимулы, такие как движения воды извивающейся рыбы, не достигли своей цели.

Особенности характера и образа жизни

Фото: Электрический угорь в природе

Электрический угорь – достаточно агрессивное создание. При малейшем ощущении опасности он атакует первым, даже если реальной угрозы его жизни не существует. Причем действие электрического разряда, испускаемого им, распространяется не только на конкретную цель, но и на всех живых существ, оказавшихся в диапазоне воздействия электрического импульса.

Характер и повадки электрического угря обусловливает и среда его обитания. Мутные илистые воды рек и озер заставляют его проявлять хитрость и использовать весь свой охотничий арсенал, чтобы добыть себе пропитание. В то же время, имеющий хорошо развитую систему электролокации, угорь находится в куда более выгодном положении, нежели другие подводные обитатели.

Интересный факт: Зрение электрического угря настолько слабое, что он практически не использует его, предпочитая ориентироваться в пространстве при помощи электрический сенсоров, расположенных по всему телу.

Ученые продолжают изучать процесс генерирования энергии этими удивительными созданиями. Напряжение в несколько сотен ватт создается с помощью тысяч электроцитов – мышечных клеток, накапливающих энергию из пищи.

Но животное также может генерировать слабые электрические токи, например, при выборе партнера. Точно не известно, использует ли угорь дозированное электричество при контакте с партнёром, как он это делает для охоты на рыбу и беспозвоночных в воде. Однако известно, что животное использует свои удары током не только для внезапного паралича и убийства жертв во время охоты. Скорее он использует их специально и дозирует их соответственно, чтобы контролировать свою цель дистанционно.

Он использует двойную стратегию: с одной стороны, он генерирует мягкие удары током, чтобы шпионить за своей добычей, определять её местонахождение и считывать электрический профиль своей цели. С другой стороны, удар высоковольтным током является для него абсолютным оружием.

Социальная структура и размножение

Фото: Рыба электрический угорь

Электрические угри ищут своего партнера для спаривания с помощью скачков напряжения. Но они производят только слабые разряды, которые могут улавливаться возможным партнером в мутной воде. Период спаривания обычно приходится на временной отрезок с сентября по декабрь. Затем самцы строят гнезда из водных растений, а самки откладывают яйца. В кладке обычно около 1700 икринок.

Интересный факт: Во время спаривания генерируемые угрем мощные разряды не причиняют вреда партнеру. Это свидетельствует о наличии у них способности включать и выключать систему защиты от поражения электротоком.

Обе особи охраняют свое гнездо и яйца, а позже – личинок, иногда достигающих десяти сантиметров уже в момент вылупления. Кожа мальков светло-зеленого оттенка, неоднородная, с мраморными разводами. Те мальки, которым посчастливилось вылупиться первыми, поедают остальную икру. Поэтому из кладки в 1700 яиц выживают не больше трети мальков, остальные икринки становятся первой пищей для своих собратьев.

Молодые животные питаются в основном беспозвоночными, которых могут найти на дне. Взрослые угри обычно охотятся на рыбу, распознавая её с помощью слабых электрических разрядов и парализуя добычу сильными ударами тока перед заглатыванием. Через некоторое время после рождения личинки угря уже способны генерировать электрический ток малого напряжения. А вести самостоятельный образ жизни и предпринимать первые попытки поохотиться молодняк начинает в возрасте нескольких недель.

Интересный факт: Если взять в руки малька, которому всего несколько дней от роду, можно почувствовать покалывания от электрических разрядов.

Естественные враги электрического угря

Фото: Электрический угорь

Электрический угорь обладает настолько совершенной защитой от нападения, что в привычной среде обитания у него практически нет естественных врагов. Известны лишь некоторые случаи противостояния электрического угря с крокодилами и кайманами. Эти хищники не против полакомиться угрем, однако вынуждены считаться с его уникальной способностью генерировать мощные электрические разряды. Несмотря на грубую и толстую крокодилью шкуру они способны нанести вред даже крупному представителю пресмыкающихся.

Поэтому большинство подводных и наземных животных предпочитают держаться как можно дальше от тех мест, где обитают электрические угри и избегать даже случайной встречи с ними. Последствия удара током, испускаемым угрем, действительно крайне неприятны – от временного паралича и болезненных спазмов до смертельного исхода. Сила повреждений напрямую зависит от мощности электрического разряда.

Учитывая эти факты, можно считать, что основным естественным врагом электрического угря был и остается человек. Хотя мясо этого представителя морской фауны нельзя назвать деликатесным, масштабы его отлова достаточно велики.

Интересный факт: Охота на электрического угря – дело очень непростое и крайне опасное, но рыбаки и браконьеры нашли оригинальный способ массовой ловли. В место наибольшего скопления электрических угрей на мелководье они загоняют небольшое стадо крупного скота – коров или лошадей. Эти животные довольно спокойно переносят удары электрических разрядов угря. Когда коровы перестают метаться по воде и успокаиваются это означает, что угри закончили атаку. Они не могут бесконечно генерировать электричество, импульсы постепенно ослабевают и, наконец, совсем прекращаются. В этот момент их и отлавливают, не опасаясь получить сколько-нибудь серьезные повреждения.

Популяция и статус вида

Фото: Рыба электрический угорь

При такой большой площади обитания трудно судить о реальных размерах популяции электрического угря. В настоящее время вид по данным Всемирного союза охраны природы МСОП не занесён в зону риска вымирания.

Несмотря на то, что электрический угорь практически не имеет естественных врагов и еще не находится в зоне риска исчезновения, различные факторы вмешательства человека в экосистему его обитания подвергают существование этого вида значительным угрозам. Чрезмерный вылов рыбы делает уязвимыми запасы его добычи. Особенно, если учитывать, что тропические пресноводные экосистемы Южной Америки очень чувствительны к малейшим вмешательствам и способны разрушаться даже при небольших помехах.

Водоёмы и их обитатели подвергаются отравлению ртутью, бесконтрольно используемой золотодобытчиками для сепарации золота от отложений речного грунта. В результате чего электрический угорь, как плотоядное животное, находящееся на вершине пищевой цепочки, подвергается наибольшему отравлению. Также проекты плотин влияют на среду обитания электрического угря значительным изменением водоснабжения.

Проекты WWF и TRAFFIC по защите животного и растительного мира Амазонки Защита среды обитания всех исчезающих видов животных и растений Амазонки имеют абсолютный приоритет. Поэтому WWF поставил себе цель в ближайшие десять лет, обеспечить безопасность большей части биоразнообразия бразильского бассейна Амазонки через обширную сеть охраняемых районов.

Чтобы достичь этого, WWF работает на самых разных уровнях в целях спасения тропического леса Амазонки. В рамках инициативы WWF правительство Бразилии в 1998 году дало обещание защитить десять процентов тропических лесов бразильской Амазонки и разработало одну из самых амбициозных природоохранных программ в мире – «Amazon Region Protected Areas Programme» (ARPA). Реализация этой программы имеет для WWF абсолютный приоритет. В общей сложности программа должна обеспечить постоянную и полную защиту 50 миллионам гектаров (приблизительная площадь Испании) тропического леса и водоемов.

Электрический угорь – уникальное создание. Он смертельно опасен не только для представителей животного мира, но и для людей. На его счету больше человеческих жертв, чем на счету пресловутых пираний. Он обладает такой грозной системой самообороны, что даже изучение его чисто в научных целях представляется невероятно сложным. Тем не менее, ученые продолжают наблюдения за жизнью этих удивительных рыб. Благодаря накопленным знаниям, люди научились содержать этого грозного хищника в неволе. И при наличии комфортных условий обитания и достаточного количества пищи, электрический угорь вполне готов поладить с человеком, если тот, в свою очередь, не станет проявлять агрессии или неуважения.

Добавить комментарий